L6: Parameter estimation

Introduction
Parameter estimation
Maximum likelihood
Bayesian estimation
Numerical examples
In previous lectures we showed how to build classifiers when the underlying densities are known

- Bayesian Decision Theory introduced the general formulation
- Quadratic classifiers covered the special case of unimodal Gaussian data

In most situations, however, the true distributions are unknown and must be estimated from data

- Two approaches are commonplace
 - Parameter Estimation (this lecture)
 - Non-parametric Density Estimation (the next two lectures)

Parameter estimation

- Assume a particular form for the density (e.g. Gaussian), so only the parameters (e.g., mean and variance) need to be estimated
 - Maximum Likelihood
 - Bayesian Estimation

Non-parametric density estimation

- Assume NO knowledge about the density
 - Kernel Density Estimation
 - Nearest Neighbor Rule
ML vs. Bayesian parameter estimation

Maximum Likelihood
- The parameters are assumed to be FIXED but unknown
- The ML solution seeks the solution that “best” explains the dataset X
 $\hat{\theta} = argmax[p(X|\theta)]$

Bayesian estimation
- Parameters are assumed to be random variables with some (assumed) known a priori distribution
- Bayesian methods seek to estimate the posterior density $p(\theta|X)$
- The final density $p(x|X)$ is obtained by integrating out the parameters
 $p(x|X) = \int p(x|\theta)p(\theta|X)d\theta$
Maximum Likelihood

Problem definition

– Assume we seek to estimate a density $p(x)$ that is known to depends on a number of parameters $\theta = [\theta_1, \theta_2, \ldots \theta_M]^T$

 • For a Gaussian pdf, $\theta_1 = \mu$, $\theta_2 = \sigma$ and $p(x) = N(\mu, \sigma)$

 • To make the dependence explicit, we write $p(x|\theta)$

– Assume we have dataset $X = \{x^{(1)}, x^{(2)}, \ldots x^{(N)}\}$ drawn independently from the distribution $p(x|\theta)$ (an i.i.d. set)

 • Then we can write

 $$p(X|\theta) = \prod_{k=1}^{N} p(x^{(k)}|\theta)$$

 • The ML estimate of θ is the value that maximizes the likelihood $p(X|\theta)$

 $$\hat{\theta} = \text{argmax}[p(X|\theta)]$$

 • This corresponds to the intuitive idea of choosing the value of θ that is most likely to give rise to the data
For convenience, we will work with the log likelihood

- Because the log is a monotonic function, then:

\[
\hat{\theta} = \arg\max_p[X|\theta] = \arg\max[\log p(X|\theta)]
\]

- Hence, the ML estimate of \(\theta \) can be written as:

\[
\hat{\theta} = \arg\max[\log \prod_{k=1}^{N} p(x^{(k)}|\theta)] = \arg\max[\sum_{k=1}^{N} \log p(x^{(k)}|\theta)]
\]

- This simplifies the problem, since now we have to maximize a sum of terms rather than a long product of terms
- An added advantage of taking logs will become very clear when the distribution is Gaussian
Example: Gaussian case, μ unknown

Problem statement

- Assume a dataset $X = \{x^{(1)}, x^{(2)}, \ldots x^{(N)}\}$ and a density of the form $p(x) = N(\mu, \sigma)$ where σ is known.

- What is the ML estimate of the mean?

 $\theta = \mu \Rightarrow \hat{\theta} = \arg\max \Sigma^N_{k=1} \log p(x^{(k)}|\theta) = \arg\max \Sigma^N_{k=1} \log \left(\frac{1}{\sqrt{2\pi}\sigma} \exp \left(-\frac{1}{2\sigma^2} (x^{(k)} - \mu)^2 \right) \right) = \arg\max \Sigma^N_{k=1} \left[\log \left(\frac{1}{\sqrt{2\pi}\sigma} \right) - \frac{1}{2\sigma^2} (x^{(k)} - \mu)^2 \right]$

- The maxima of a function are defined by the zeros of its derivative

 $\frac{\partial \Sigma^N_{k=1} \log p(x^{(k)}|\theta)}{\partial \theta} = \frac{\partial}{\partial \theta} \Sigma^N_{k=1} \log p(\cdot) = 0 \Rightarrow \mu = \frac{1}{N} \Sigma^N_{k=1} x^{(k)}$

- So the ML estimate of the mean is the average value of the training data, a very intuitive result!
Example: Gaussian case, both μ and σ unknown

A more general case when neither μ nor σ is known

- Fortunately, the problem can be solved in the same fashion
- The derivative becomes a gradient since we have two variables

\[
\hat{\theta} = \begin{bmatrix} \theta_1 = \mu \\ \theta_2 = \sigma^2 \end{bmatrix} \Rightarrow \nabla_{\theta} = \begin{bmatrix} \frac{\partial N_k=1 \log p(x^{(k)} | \theta)}{\partial \theta_1} \\ \frac{\partial N_k=1 \log p(x^{(k)} | \theta)}{\partial \theta_2} \end{bmatrix} = \sum_{k=1}^{N} \begin{bmatrix} \frac{1}{\theta_2} (x^{(k)} - \theta_1) \\ -\frac{1}{2\theta_2} + \frac{(x^{(k)} - \theta_1)^2}{2\theta_2^2} \end{bmatrix} = 0
\]

- Solving for θ_1 and θ_2 yields

\[
\hat{\theta}_1 = \frac{1}{N} \sum_{k=1}^{N} x^{(k)}; \quad \hat{\theta}_2 = \frac{1}{N} \sum_{k=1}^{N} (x^{(k)} - \hat{\theta}_1)^2
\]

 - Therefore, the ML of the variance is the sample variance of the dataset, again a very pleasing result

- Similarly, it can be shown that the ML estimates for the multivariate Gaussian are the sample mean vector and sample covariance matrix

\[
\hat{\mu} = \frac{1}{N} \sum_{k=1}^{N} x^{(k)}; \quad \hat{\Sigma} = \frac{1}{N} \sum_{k=1}^{N} (x^{(k)} - \hat{\mu})(x^{(k)} - \hat{\mu})^T
\]
Bias and variance

How good are these estimates?

– Two measures of “goodness” are used for statistical estimates
– **BIAS**: how close is the estimate to the true value?
– **VARIANCE**: how much does it change for different datasets?

– The bias-variance tradeoff
 • In most cases, you can only decrease one of them at the expense of the other
What is the bias of the ML estimate of the mean?

\[
E[\hat{\mu}] = E \left[\frac{1}{N} \sum_{k=1}^{N} x^{(k)} \right] = \frac{1}{N} \sum_{k=1}^{N} E[x^{(k)}] = \mu
\]

– Therefore the mean is an unbiased estimate

What is the bias of the ML estimate of the variance?

\[
E[\hat{\sigma}^2] = E \left[\frac{1}{N} \sum_{k=1}^{N} (x^{(k)} - \hat{\mu})^2 \right] = \frac{N - 1}{N} \sigma^2 \neq \sigma^2
\]

– Thus, the ML estimate of variance is BIASED
 • This is because the ML estimate of variance uses \(\hat{\mu} \) instead of \(\mu \)

– How “bad” is this bias?
 • For \(N \to \infty \) the bias becomes zero asymptotically
 • The bias is only noticeable when we have very few samples, in which case we should not be doing statistics in the first place!

– Notice that MATLAB uses an unbiased estimate of the covariance

\[
\hat{\Sigma}_{UNBIAS} = \frac{1}{N - 1} \sum_{k=1}^{N} (x^{(k)} - \hat{\mu})(x^{(k)} - \hat{\mu})^T
\]
In the Bayesian approach, our uncertainty about the parameters is represented by a pdf

- Before we observe the data, the parameters are described by a prior density $p(\theta)$ which is typically very broad to reflect the fact that we know little about its true value.

- Once we obtain data, we make use of Bayes theorem to find the posterior $p(\theta|X)$.
 - Ideally we want the data to sharpen the posterior $p(\theta|X)$, that is, reduce our uncertainty about the parameters.

- Remember, though, that our goal is to estimate $p(x)$ or, more exactly, $p(x|X)$, the density given the evidence provided by the dataset X.
Let us derive the expression of a Bayesian estimate

– From the definition of conditional probability
 \[p(x, \theta | X) = p(x|\theta, X)p(\theta | X) \]

– \(P(x|\theta, X) \) is independent of \(X \) since knowledge of \(\theta \) completely specifies the (parametric) density. Therefore
 \[p(x, \theta | X) = p(x|\theta)p(\theta | X) \]

– and, using the theorem of total probability we can integrate \(\theta \) out:
 \[p(x|X) = \int p(x|\theta)p(\theta | X)d\theta \]

• The only unknown in this expression is \(p(\theta | X) \); using Bayes rule
 \[p(\theta|X) = \frac{p(X|\theta)p(\theta)}{p(X)} = \frac{p(X|\theta)p(\theta)}{\int p(X|\theta)p(\theta)d\theta} \]

• Where \(p(X|\theta) \) can be computed using the i.i.d. assumption
 \[p(X|\theta) = \prod_{k=1}^{N} p(x^{(k)}|\theta) \]

• NOTE: The last three expressions suggest a procedure to estimate \(p(x|X) \). This is not to say that integration of these expressions is easy!
Example

– Assume a univariate density where our random variable x is generated from a normal distribution with known standard deviation.

– Our goal is to find the mean μ of the distribution given some i.i.d. data points $X = \{x^{(1)}, x^{(2)}, ... x^{(N)}\}$

– To capture our knowledge about $\theta = \mu$, we assume that it also follows a normal density with mean μ_0 and standard deviation σ_0

$$p_0(\theta) = \frac{1}{\sqrt{2\pi}\sigma_0} e^{-\frac{1}{2\sigma_0^2}(\theta - \mu_0)^2}$$

– We use Bayes rule to develop an expression for the posterior $p(\theta | X)$

$$p(\theta | X) = \frac{p(X | \theta) p(\theta)}{p(X)} = \frac{p_0(\theta)}{p(X)} \prod_{k=1}^{N} p(x^{(k)} | \theta) =$$

$$= \frac{1}{\sqrt{2\pi}\sigma_0} e^{-\frac{1}{2\sigma_0^2}(\theta - \mu_0)^2} \frac{1}{p(X)} \prod_{k=1}^{N} \left[\frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{1}{2\sigma^2}(x^{(k)} - \theta)^2} \right]$$

[Bishop, 1995]
– To understand how Bayesian estimation changes the posterior as more data becomes available, we will find the maximum of \(p(\theta|X) \)

– The partial derivative with respect to \(\theta = \mu \) is

\[
\frac{\partial}{\partial \theta} \log p(\theta|X) = 0 \Rightarrow \frac{\partial}{\partial \mu} \left[-\frac{1}{2\sigma_0^2} (\mu - \mu_0)^2 - \sum_{k=1}^{N} \frac{1}{2\sigma^2} (x^{(k)} - \mu)^2 \right] = 0
\]

– which, after some algebraic manipulation, becomes

\[
\mu_N = \frac{\sigma^2}{\sigma^2 + N\sigma_0^2} \mu_0 + \frac{N\sigma_0^2}{\sigma^2 + N\sigma_0^2} \frac{1}{N} \sum_{k=1}^{N} x^{(k)}
\]

- Therefore, as \(N \) increases, the estimate of the mean \(\mu_N \) moves from the initial prior \(\mu_0 \) to the ML solution

– Similarly, the standard deviation \(\sigma_N \) can be found to be

\[
\frac{1}{\sigma_N^2} = \frac{N}{\sigma^2} + \frac{1}{\sigma_0^2}
\]

[Bishop, 1995]
Example

Assume that the true mean of the distribution $p(x)$ is $\mu = 0.8$ with standard deviation $\sigma = 0.3$

- In reality we would not know the true mean; we are just “playing God”
 - We generate a number of examples from this distribution
 - To capture our lack of knowledge about the mean, we assume a normal prior $p_0(\theta_0)$, with $\mu_0 = 0.0$ and $\sigma_0 = 0.3$
 - The figure below shows the posterior $p(\mu|X)$
 - As N increases, the estimate μ_N approaches its true value ($\mu = 0.8$) and the spread σ_N (or uncertainty in the estimate) decreases
ML vs. Bayesian estimation

What is the relationship between these two estimates?

– By definition, $p(X|\theta)$ peaks at the ML estimate
– If this peak is relatively sharp and the prior is broad, then the integral below will be dominated by the region around the ML estimate

$$p(x|X) = \int p(x|\theta)p(\theta|X)d\theta \cong p(x|\hat{\theta})\int p(\theta|X)d\theta = p(x|\hat{\theta})$$

• Therefore, the Bayesian estimate will approximate the ML solution
– As we have seen in the previous example, when the number of available data increases, the posterior $p(\theta|X)$ tends to sharpen
 • Thus, the Bayesian estimate of $p(x)$ will approach the ML solution as $N \to \infty$
 • In practice, only when we have a limited number of observations will the two approaches yield different results