L4: Bayesian Decision Theory

- Likelihood ratio test
- Probability of error
- Bayes risk
- Bayes, MAP and ML criteria
- Multi-class problems
- Discriminant functions
Likelihood ratio test (LRT)

Assume we are to classify an object based on the evidence provided by feature vector x

- Would the following decision rule be reasonable?
 - "Choose the class that is most probable given observation x"
 - More formally: Evaluate the posterior probability of each class $P(\omega_i|x)$ and choose the class with largest $P(\omega_i|x)$

Let's examine this rule for a 2-class problem

- In this case the decision rule becomes

 \[
 \begin{align*}
 \text{if } P(\omega_1|x) > P(\omega_2|x) \text{ choose } \omega_1 \\
 \text{else choose } \omega_2
 \end{align*}
 \]

- Or, in a more compact form
 \[P(\omega_1|x) \overset{\omega_1}{\gtrless} P(\omega_2|x)\]

- Applying Bayes rule
 \[
 \frac{p(x|\omega_1)P(\omega_1)}{p(x)} > \frac{p(x|\omega_2)P(\omega_2)}{p(x)}
 \]
– Since \(p(x) \) does not affect the decision rule, it can be eliminated*
– Rearranging the previous expression

\[
\Lambda(x) = \frac{p(x|\omega_1)}{p(x|\omega_2)} \frac{\omega_1}{\omega_2} \frac{P(\omega_2)}{P(\omega_1)}
\]

– The term \(\Lambda(x) \) is called the likelihood ratio, and the decision rule is known as the \textit{likelihood ratio test}

*\(p(x) \) can be disregarded in the decision rule since it is constant regardless of class \(\omega_i \). However, \(p(x) \) will be needed if we want to estimate the posterior \(P(\omega_i|x) \) which, unlike \(p(x|\omega_1)P(\omega_1) \), is a true probability value and, therefore, gives us an estimate of the “goodness” of our decision
Likelihood ratio test: an example

Problem

– Given the likelihoods below, derive a decision rule based on the LRT (assume equal priors)
 \[p(x|\omega_1) = N(4,1); \quad p(x|\omega_2) = N(10,1) \]

Solution

– Substituting into the LRT expression
 \[\Lambda(x) = \frac{\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-4)^2}}{\frac{1}{\sqrt{2\pi}} e^{-\frac{1}{2}(x-10)^2}} \begin{cases} > 1 & \omega_1 > \omega_2 \\ < 1 & \omega_1 < \omega_2 \end{cases} \]

– Simplifying the LRT expression
 \[\Lambda(x) = e^{-\frac{1}{2}(x-4)^2 + \frac{1}{2}(x-10)^2} \begin{cases} \omega_1 > 1 & \omega_1 > \omega_2 \\ \omega_1 < 1 & \omega_1 < \omega_2 \end{cases} \]

– Changing signs and taking logs
 \[(x - 4)^2 - (x - 10)^2 \leq 0 \]

– Which yields \(x \leq 7 \)

– This LRT result is intuitive since the likelihoods differ only in their mean

– How would the LRT decision rule change if the priors were such that \(P(\omega_1) = 2P(\omega_2) \)?
Probability of error

The performance of any decision rule can be measured by $P[\text{error}]$

- Making use of the Theorem of total probability (L2):
 \[P[\text{error}] = \sum_{i=1}^{C} P[\text{error} | \omega_i] P[\omega_i] \]
- The class conditional probability $P[\text{error} | \omega_i]$ can be expressed as
 \[P[\text{error} | \omega_i] = P[\text{choose } \omega_j | \omega_i] = \int_{R_j} p(x | \omega_i) dx = \epsilon_i \]
- So, for our 2-class problem, $P[\text{error}]$ becomes
 \[P[\text{error}] = P[\omega_1] \int_{R_2} p(x | \omega_1) dx + P[\omega_2] \int_{R_1} p(x | \omega_2) dx \]
 \[\underbrace{\epsilon_1}_{R_2: \text{say } \omega_1} + \underbrace{\epsilon_2}_{R_1: \text{say } \omega_2} \]
 - where ϵ_i is the integral of $p(x | \omega_i)$ over region R_j where we choose ω_j
- For the previous example, since we assumed equal priors, then
 \[P[\text{error}] = (\epsilon_1 + \epsilon_2)/2 \]
- How would you compute $P[\text{error}]$ numerically?
How good is the LRT decision rule?

– To answer this question, it is convenient to express $P[error]$ in terms of the posterior $P[error|x]$

$$P[error] = \int_{-\infty}^{\infty} P[error|x]p(x)dx$$

– The optimal decision rule will minimize $P[error|x]$ at every value of x in feature space, so that the integral above is minimized
At each x', $P[\text{error}|x']$ is equal to $P[\omega_i|x']$ when we choose ω_j

- This is illustrated in the figure below

From the figure it becomes clear that, for any value of x', the LRT will always have a lower $P[\text{error}|x']$

- Therefore, when we integrate over the real line, the LRT decision rule will yield a lower $P[\text{error}]$

For any given problem, the minimum probability of error is achieved by the LRT decision rule; this probability of error is called the Bayes Error Rate and is the best any classifier can do.
Bayes risk

So far we have assumed that the penalty of misclassifying \(x \in \omega_1 \) as \(\omega_2 \) is the same as the reciprocal error

- In general, this is not the case
- For example, misclassifying a cancer sufferer as a healthy patient is a much more serious problem than the other way around
- This concept can be formalized in terms of a cost function \(C_{ij} \)
 - \(C_{ij} \) represents the cost of choosing class \(\omega_i \) when \(\omega_j \) is the true class

We define the Bayes Risk as the expected value of the cost

\[
\mathcal{R} = E[C] = \sum_{i=1}^{2} \sum_{j=1}^{2} C_{ij} P[\text{choose } \omega_i \text{ and } x \in \omega_j] = \\
= \sum_{i=1}^{2} \sum_{j=1}^{2} C_{ij} P[x \in R_i | \omega_j] P[\omega_j]
\]
What is the decision rule that minimizes the Bayes Risk?

– First notice that

\[P[x \in R_i | \omega_j] = \int_{R_i} p(x|\omega_j) dx \]

– We can express the Bayes Risk as

\[\mathcal{R} = \int_{R_1} [C_{11}P[\omega_1]p(x|\omega_1) + C_{12}P[\omega_2]p(x|\omega_2)] dx + \int_{R_2} [C_{21}P[\omega_1]p(x|\omega_1) + C_{22}P[\omega_2]p(x|\omega_2)] dx \]

– Then we note that, for either likelihood, one can write:

\[\int_{R_1} p(x|\omega_i) dx + \int_{R_2} p(x|\omega_i) dx = \int_{R_1 \cup R_2} p(x|\omega_i) dx = 1 \]
Merging the last equation into the Bayes Risk expression yields

$$\mathcal{R} = C_{11} P_1 \int_{R_1} p(x|\omega_1)dx + C_{12} P_2 \int_{R_1} p(x|\omega_2)dx$$

$$+ C_{21} P_1 \int_{R_2} p(x|\omega_1)dx + C_{22} P_2 \int_{R_2} p(x|\omega_2)dx$$

$$+ C_{21} P_1 \int_{R_1} p(x|\omega_1)dx + C_{22} P_2 \int_{R_1} p(x|\omega_2)dx$$

$$- C_{21} P_1 \int_{R_1} p(x|\omega_1)dx - C_{22} P_2 \int_{R_1} p(x|\omega_2)dx$$

Now we cancel out all the integrals over R_2

$$\mathcal{R} = C_{21} P_1 + C_{22} P_2 + (C_{12} - C_{22}) P_2 \int_{R_1} p(x|\omega_2)dx + (C_{21} - C_{11}) P_1 p(x|\omega_1)dx$$

The first two terms are constant w.r.t. R_1 so they can be ignored

Thus, we seek a decision region R_1 that minimizes

$$R_1 = \arg\min_{R_1} \int_{R_1} [(C_{12} - C_{22}) P_2 p(x|\omega_2) - (C_{21} - C_{11}) P_1 p(x|\omega_1)]dx$$

$$= \arg\min_{R_1} \int_{R_1} g(x)$$
Let’s forget about the actual expression of \(g(x) \) to develop some intuition for what kind of decision region \(R_1 \) we are looking for

- Intuitively, we will select for \(R_1 \) those regions that minimize \(\int_{R_1} g(x) \)
- In other words, those regions where \(g(x) < 0 \)

So we will choose \(R_1 \) such that

\[
(C_{21} - C_{11})P_1 p(x|\omega_1) > (C_{12} - C_{22})P_2 p(x|\omega_2)
\]

And rearranging

\[
\frac{P(x|\omega_1)^{\omega_1}}{P(x|\omega_2)^{\omega_2}} > \frac{(C_{12} - C_{22})P(\omega_2)}{(C_{21} - C_{11})P(\omega_1)}
\]

Therefore, minimization of the Bayes Risk also leads to an LRT
The Bayes risk: an example

Consider a problem with likelihoods

\[L_1 = N(0, \sqrt{3}) \] and \[L_2 = N(2,1) \]

- Sketch the two densities
- What is the likelihood ratio?
- Assume \(P_1 = P_2, C_{ii} = 0, C_{12} = 1 \) and \(C_{21} = 3^{1/2} \)
- Determine a decision rule to minimize \(P[error] \)

\[
\Lambda(x) = \left(\frac{N(0, \sqrt{3})}{N(2,1)} \right) \begin{cases} \omega_1 & \omega_1 > \frac{1}{\omega_2} > \frac{1}{\sqrt{3}} \\ \omega_2 & \end{cases} \\
\Rightarrow -\frac{1}{2} \frac{x^2}{3} + \frac{1}{2} (x - 2)^2 < 0 \\
\Rightarrow 2x^2 - 12x + 12 < 0 \\
\Rightarrow x = 4.73, 1.27
\]
LRT variations

Bayes criterion

– This is the LRT that minimizes the Bayes risk

\[
\Lambda_{\text{Bayes}}(x) = \frac{p(x|\omega_1) \omega_1}{p(x|\omega_2) \omega_2} \frac{(C_{12} - C_{22}) P(\omega_2)}{(C_{21} - C_{11}) P(\omega_1)}
\]

Maximum A Posteriori criterion

– Sometimes we may be interested in minimizing \(P[\text{error}] \)

– A special case of \(\Lambda_{\text{Bayes}}(x) \) that uses a zero-one cost \(C_{ij} = \begin{cases} 0; i = j \\ 1; i \neq j \end{cases} \)

– Known as the MAP criterion, since it seeks to maximize \(P(\omega_i|x) \)

\[
\Lambda_{\text{MAP}}(x) = \frac{p(x|\omega_1) \omega_1}{p(x|\omega_2) \omega_2} \frac{P(\omega_2)}{P(\omega_1)} \Rightarrow \frac{P(\omega_1|x) \omega_1}{P(\omega_2|x) \omega_2} > 1
\]

Maximum Likelihood criterion

– For equal priors \(P[\omega_i] = 1/2 \) and 0/1 loss function, the LTR is known as a ML criterion, since it seeks to maximize \(P(x|\omega_i) \)

\[
\Lambda_{\text{ML}}(x) = \frac{p(x|\omega_1) \omega_1}{p(x|\omega_2) \omega_2} > 1
\]
Two more decision rules are commonly cited in the literature

– The **Neyman-Pearson Criterion**, used in Detection and Estimation Theory, which also leads to an LRT, fixes one class error probabilities, say \(\epsilon_1 < \alpha \), and seeks to minimize the other

 • For instance, for the sea-bass/salmon classification problem of L1, there may be some kind of government regulation that we must not misclassify more than 1% of salmon as sea bass

 • The Neyman-Pearson Criterion is very attractive since it does not require knowledge of priors and cost function

– The **Minimax Criterion**, used in Game Theory, is derived from the Bayes criterion, and seeks to minimize the maximum Bayes Risk

 • The Minimax Criterion does nor require knowledge of the priors, but it needs a cost function

– For more information on these methods, refer to “*Detection, Estimation and Modulation Theory*”, by H.L. van Trees
Minimum $P[\text{error}]$ for multi-class problems

Minimizing $P[\text{error}]$ generalizes well for multiple classes

- For clarity in the derivation, we express $P[\text{error}]$ in terms of the probability of making a correct assignment

$$P[\text{error}] = 1 - P[\text{correct}]$$

- The probability of making a correct assignment is

$$P[\text{correct}] = \sum_{i=1}^{C} P[\omega_i] \int_{R_i} p(x|\omega_i) dx$$

- Minimizing $P[\text{error}]$ is equivalent to maximizing $P[\text{correct}]$, so expressing the latter in terms of posteriors

$$P[\text{correct}] = \sum_{i=1}^{C} \int_{R_i} p(x)P(\omega_i|x) dx$$

- To maximize $P[\text{correct}]$, we must maximize each integral \int_{R_i}, which we achieve by choosing the class with largest posterior

- So each R_i is the region where $P(\omega_i|x)$ is maximum, and the decision rule that minimizes $P[\text{error}]$ is the MAP criterion

![Graph showing probability distributions and regions](image)
Minimum Bayes risk for multi-class problems

Minimizing the Bayes risk also generalizes well

As before, we use a slightly different formulation

- We denote by α_i the decision to choose class ω_i
- We denote by $\alpha(x)$ the overall decision rule that maps feature vectors x into classes ω_i, $\alpha(x) \rightarrow \{\alpha_1, \alpha_2, ... \alpha_C\}$

- The (conditional) risk $\mathbb{R}(\alpha_i | x)$ of assigning x to class ω_i is
 \[
 \mathbb{R}(\alpha(x) \rightarrow \alpha_i) = \mathbb{R}(\alpha_i | x) = \Sigma_{j=1}^{C} C_{ij} P(\omega_j | x)
 \]

- And the Bayes Risk associated with decision rule $\alpha(x)$ is
 \[
 \mathbb{R}(\alpha(x)) = \int \mathbb{R}(\alpha(x) | x)p(x)dx
 \]

- To minimize this expression, we must minimize the conditional risk $\mathbb{R}(\alpha(x) | x)$ at each x, which is equivalent to choosing ω_i such that $\mathbb{R}(\alpha_i | x)$ is minimum
Discriminant functions

All the decision rules shown in L4 have the same structure

- At each point x in feature space, choose class ω_i that maximizes (or minimizes) some measure $g_i(x)$
- This structure can be formalized with a set of discriminant functions $g_i(x), i = 1..C$, and the decision rule

 \[\text{“assign } x \text{ to class } \omega_i \text{ if } g_i(x) > g_j(x) \ \forall j \neq i” \]

- Therefore, we can visualize the decision rule as a network that computes C df’s and selects the class with highest discriminant
- And the three decision rules can be summarized as

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Discriminant Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bayes</td>
<td>$g_i(x) = -\gamma_i(\alpha</td>
</tr>
<tr>
<td>MAP</td>
<td>$g_i(x) = P(\omega</td>
</tr>
<tr>
<td>ML</td>
<td>$g_i(x) = P(x</td>
</tr>
</tbody>
</table>

![Decision rule visualization](image)